Tag Archives: Jim Bell

mars

NASA chooses ASU for Mars 2020 mission

Arizona State University has been selected by NASA to design, deliver and oversee the Mastcam-Z imaging investigation, a pair of color panoramic zoom cameras, on the next rover mission to be launched to the surface of Mars in 2020. Jim Bell, a professor in ASU’s School of Earth and Space Exploration, will be the principal investigator overseeing the investigation.

NASA has selected the instruments that will be carried aboard the Mars 2020 mission, a roving laboratory based on the highly successful Curiosity rover. The instruments were competitively selected from 58 proposals submitted, two times the average number of proposals submitted for instrument competitions in the recent past and an indicator of the extraordinary interest in exploration of the Red Planet.

The Mars 2020 rover will be designed to seek signs of past life on Mars, to collect and store samples that could be returned to Earth in the future, and to test new technology to benefit future robotic and human exploration of Mars. The instruments onboard will help to build upon the many discoveries from the Curiosity Mars rover and the two Mars Exploration Rovers (Spirit and Opportunity) and will be the critical next step in NASA’s strategic program of exploring the Red Planet.

Bell will oversee an international science team responsible for creating and operating the cameras on NASA’s next, yet-to-be-named, Mars rover. Bell has been responsible for the science imaging systems onboard the NASA Mars Exploration Rovers Spirit and Opportunity, and is the deputy P.I. of the color cameras on the Curiosity rover.

“These cameras will be the main eyes of NASA’s next rover,” says Bell.

The imaging system ASU will deliver is a pair of multispectral, stereoscopic cameras that will be an enhanced descendant of Curiosity’s successful imaging instrument called Mastcam. Mastcam-Z will be comprised of two zoom camera heads to be mounted on the rover’s remote sensing mast. This matched pair of zoom cameras will each provide broad-band red/green/blue (RGB) color imaging, as well as narrow-band visible to short-wave near-infrared multispectral capability.

Mastcam-Z will have all of the capabilities of Curiosity’s imaging instrument, but is augmented by a 3.6:1 zoom feature capable of resolving features about 1 millimeter in size in the near field and about 3-4 centimeters in size at 100 meter distance.

“The cameras that we will build and use on Mars are based on Curiosity’s cameras but with enhanced capabilities,” explains Bell. “Specifically we will be able to use our zoom capability to allow us to play a much more significant role in rover driving and target selection.”

Mastcam-Z’s imaging will permit the science team to piece together the geologic history of the site—the stratigraphy of rock outcrops and the regolith, as well as to constrain the types of rocks present. The cameras will also document dynamic processes and events via video (such as dust devils, cloud motions, and astronomical phenomena, as well as activities related to driving, sampling, and caching), observe the atmosphere, and contribute to rover navigation and target selection for investigations by the coring/caching system, as well as other instruments.

Bell’s large international science team will include Mark Robinson, School of Earth and Space Exploration professor and principal investigator for the imaging system on board NASA’s Lunar Reconnaissance Orbiter Camera. Robinson brings significant experience in planetary geology and spacecraft imaging and will be responsible for characterizing the regolith from Mastcam‐Z images and assisting with camera calibration and mission operations.

In addition, Bell intends to involve a significant number of staff, undergraduate students, and graduate students in the mission. For example, SESE Research Scientist Craig Hardgrove and Technology Support Analyst Austin Godber are slated to play leading roles in the design, testing, and operations of the Mastcam-Z investigation.

Mastcam-Z remote instrument operations will be directed from the ASU Science Operations Center (SOC), housed in the Mission Operations Center located in the Interdisciplinary Science and Technology Building IV on the ASU campus. ASU faculty, staff, and students will work closely with mission engineering leads at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“We are very excited about playing such a critical role in NASA’s next Mars rover. And we are especially excited because this rover will be the first step in NASA’s Mars rover sample return mission,” says Bell. “We are eager are to play a role in the selection of the first Martian samples for eventual return to Earth.”

trojan_colors_revealed_artists_concept

Asteroids named for 2 ASU faculty members

Two Arizona State University professors can add an unusual honor to the long list of accolades they have received: An asteroid has been named after each of them. This “out-of-this-world” honor has been conferred on professors Phil Christensen and Dave Williams. The two planetary geologists, both faculty members in ASU’s School of Earth and Space Exploration, now have even more reason to be gazing at the night sky.

You know the names of our solar system’s planets, but you might not have realized that thousands of asteroids and minor planets revolving around the sun also have names.

Asteroid (10461) Dawilliams was discovered on December 6, 1978, by E. Bowell and A. Warnock at Palomar Observatory. It orbits about 2.42 astronomical units from the Earth in the Main Belt, the vast asteroid belt located between the orbits of Mars and Jupiter.

Despite Hollywood’s love of Earth-smashing asteroid blockbusters, Williams has no worries that “his” asteroid will make doomsday headlines.

“It’s very unlikely that it will hit Earth, as it is in a stable orbit in the Main Belt,” explains Williams.
Also honored with an asteroid named for his work is Christensen, the instrument scientist for the OSIRIS-Rex Thermal Emission Spectrometer, a mineral-scouting instrument on the OSIRIS-REx mission to asteroid Bennu. He was also the principal investigator for the infrared spectrometers and imagers on NASA’s Mars Global Surveyor, Mars Odyssey and Mars Exploration Rovers.

The asteroid is named (90388) Philchristensen and, like Williams’, it too is a Main Belt asteroid that is relatively small – approximately 4.6 kilometers (2.8 miles) across. It was discovered November 24, 2003 by the Catalina Sky Survey. It also poses no risk of collision with Earth.

“My research has long focused on Mars,” says Christensen. “But my broader interests involve all solar system bodies, and I’ve spent the last several years working on an asteroid mission. I really appreciate this honor.”

What’s in a name?
Having a namesake in the sky is no small honor. Unlike the selling of star names over the Internet, the naming of asteroids is serious business, presided over by the International Astronomical Union (IAU), an organization of professional astronomers.

Upon its discovery, an asteroid is assigned a provisional designation by the Minor Planet Center of the IAU that involves the year of discovery, two letters and, if need be, further digits. When its orbit can be reliably predicted, the asteroid receives a permanent number and becomes eligible for naming. Proposed names must be approved by the IAU’s Committee on Small Body Nomenclature.

Although many objects end up being named after astronomers and other scientists, some discoverers have named the object after celebrities. All four Beatles have their names on asteroids, for example, and there is even one named after James Bond – Asteroid (9007) James Bond.

“I was very surprised to receive this honor from the astronomical community. Only a select few of the Dawn at Vesta participating scientists, who did exemplary work during the mission, were so honored,” said Williams, whose expertise in mapping of volcanic surfaces has been key to developing geologic maps of planetary bodies that include Mars, Io and Vesta.

Christensen and Williams share this honor with several colleagues in the School of Earth and Space Exploration. The following all have namesakes in the sky:

• Erik Asphaug, professor – Asteroid (7939) Asphaug
• Jim Bell, professor – Asteroid (8146) Jimbell
• Lindy Elkins-Tanton, Foundation Professor and School of Earth and Space Exploration director – Asteroid (8252) Elkins-Tanton
• Ronald Greeley, professor emeritus – Asteroid (30785) Greeley, and Greeley’s Haven (on Mars)
• Sumner Starrfield, Regents’ Professor – Asteroid (19208) Starrfield
• Meenakshi Wadhwa, professor – Asteroid (8356) Wadhwa